Maintenance Panel

The maintenace panel (MP) is a subsystem designed to allow observation of
the system and manual programming of devices It can both read data from the
bus onto display lights and write it from a set of switch settings, in

either bus master or slave modes

In master mode, the maintenace panel must establish itself as bus master
before it can perform any I/0 to the bus. This protocal is implemented
directly in combinational logic. When the bus-master logic sees MP-BR’
asserted it knows the MP wants to become bus master and asserts BR’ (bus
request. It then waits for BG-OUT (Bus Grant out) to go low, indicating
know other device is waiting to become bus master. When this falls it waits
for BG-IN from the priority arbitor to signal that it is next in line to use

the bus. When BG-IN comes high it signals the state machine that it has
control of the bus (GOT-BUS) and sets a flip flop so that it's bus grant is

not passed to any other modules. The state machine then waits for BBSY' to
become de-asserted, indicating the previous master was finished with the bus
and it can use it. This signal is passed to the state machine as BUS-FREE.
The MP then asserts BBSY’ until it has completed use of the bus. When the
1/0 is completed (indicated by MP-BBSY dropping) the flip-flop is reset, BBSY’
is de-asserted and the Bus grant line is no longer blocked.

The general sequencing of both the bus master protocal and the slave protocal
is done with a sequencing state machine, as follows:

000 [Idle]
| <- GO signal from MP
|
001 [Generate MP-BR']
|
| <~ Got-Bus
010
| <~ Bus-Free
|
011 [Assert BBSY']
|
|
100 [Assert MP-DRIVE and MSYN']
| <- wait for SSYN from slave
[
101 [Assert BBSY', drop MSYN']
| <~ wait for SSYN' from slave to de-assert
|
110 [De-assert BBSY', load counter to state 000 (or 001)



Maintenance Panel (con’t)

The state machine is implemented using a counter, selector and decoder. The
counter enable is connected to the output of the selector, and the input

lines of the selector are tied to the corresponding control lines to allow

the counter to advance when the line for that state turns high. The state
variables are then decoded and fed separatly to the rest of the system.

The intial GO signal is provided by first debouncing a switch and feeding the
ouput of this to the CLK input of a flip flip. When the GO switch is

activated, the leading edge causes the flip flop to toggle, allowing the

counter to procede from state 000. The flip—flop is reset when the counter

is loaded. An addition was made to the circuit allowing the counter to be
loaded to state 000 as well as 001 depending on a switch setting. This

causes the MP to execute another bus cycle immediatly instead of stopping and
waiting for GO. This is VERY handy for finding timing problems, since the
repeating signals can be easily traced with a scope.

The MP controls the address bus by a series of switches gated to the address
bus. This are driven on to the bus when MP-DRIVE is asserted. If the MP is

in Write mode, the MP-DRIVE signal will cause MAST-WRT’ to be asserted along
with MP-DRIVE, allowing the data in the switches to be driven onto the bus.

If the MP is in Read mode, MAST-RD is asserted and the data on the bus is
clocked into a latch with outputs driving a set of LED’s.

The MP can also act as a bus slave, responding to address 101XXXXXXxX.
When the address is selected and MSYN' is asserted, either a read or

write signal is generated. These are ORed with the MAST-RD and MAST-WRT
signals generated in master mode to drive the MP-RD and MP-WRT signals
controling the latches and data buffers. SSYN’' is generated along with

the data action.
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Maintenance Panel Block Diagram
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Maintenance Panel Signals

Got-Bus Indicates MP is next in line to be Bus Master

Bus-Free Indicates.MP is free to assert BBSY

MP-BR Asserted when MP is ready to start master cycle

MP-DRIVE Asserted when MP is actually driving the bus (MSYN cycle)

MP-RD Clocks data into lights register

MP-WRT Drives switch data onto bus

MAST-RD True when Master-mode MP wants to write to the bus

MAST-WRT "o " oo " read the bus
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Maintenance Panel Design and Construnction notes

A feature was added to the MP to allow it to work in ‘continous’ mode, as
described earlier. 'I;his was very useful in not only debugging the maintenance
panel, but the peritgrals as well, since a repeating waveform is generated

that can be observed with a scope.

A major construction annoyance was in the timing of writing data onto the

bus. The problem stems from the fact that the Slave mode for the MP was

added as an afterthought. In the original design, MAST-WRT’ drove MP-WRT’
directly, so there was only one gate delay between MP-DRIVE’ and MP-WRT".
(which made it about even with MSYN’, since it also has one gate delay from
MP-DRIVE’). But when the slave mode was added, extra layers of logic were
needed between MP-DRIVE' and MP-WRT' to allow for the case when the MP wrote
to the bus as a slave. It turns out this delay was too long, since when a

slave (e.g., the MP) saw MSYN’ asserted the data wasn't ready yet. As a kludge

to get around this, an extra switch was added so that when the MP is in

WRITE mode as a master, MAST-WRT’ and MP-WRT' are connected directly together,
but in READ mode-as—-master it can respond as a slave. (the setting of the
switch should be in READ mode for operation as a slave that can write. It

can properly read when in this position.)
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Lab 1. System Clock and UART device

The system clock provides the timing for the rest of the system. It is based
on a crystal oscillator running at 1.8432 Mhz. This signal is then fed into
into the clock circiut to produce the 618.04 Khz non-symetric signal for the
rest of the machine.

System clock design

The output from the crystal oscillator is first fed into an inverter, then
is fed into a 74C160 counter. The counter’s inputs are all grounded, so the
load input to the counter is effectivly the same as a synchronis clear.

When the clock is running normally, the RUN line will be high, turning on the
ENABLE lines on and allowing the counter to count. When RUN goes off, the
counter is disabled and the clock output stops.

Bit 2 of the counter (2~ 1) is tied through an inverter to the LOAD input of
the counter (active low). This causes the counter to be reset on the next
clock edge after reaching 10. Since the load input now goes low ever third
clock pulse, this provides the desired system clock (see the timing diagrams
for more info).

The counter can also be stepped a single pulse by using the single step
switch. The switch is first debounced through an RS flip-flop, then fed to
the clock of a 74C74 D type flop flop. A rising edige on the CLK turns on
the Q output of the flip—flop, which in turn enables the counter. When the
counter reaches 10, a low is asserted to the flip—flop’s CLR input, bringing
the Q input back to zero, and disabling the counter.
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The UART
Bus interface.

To prevent loading and fan-out problems, all lines from the buss are buffered.
In this case there are only two of them SYSCLOCK' and INIT. Since INIT' is
generated by a switch (and therefore immune to fan-out problems) | see no
sense in buffering it. The SYSCLOCK' input is first fed into an inverter

that generates EARLY-CLOCK. This in turn is fed to another inverter produceing
M-CLK. EARLY-CLOCK is used in instances where a logic element must be
clocked through another gate. Since EARLY-CLOCK is both inverted and occurs
one gate delay sooner than M-CLK, the clock skews caused by clocking the
logic through the extra gate are hopefully minimized. M-CLK is fed into

a divide by 16 counter to produce an 8*4800 baud signal called BAUD-CLK.

This signal is first NANDed with EARLY-CLK to help compensate for delays
induced by the counter (Hayes advice). An EARLY-BAUD-CLK is provided for
much the same reasons as EARLY-CLK was for system use; execpt EARLY-BAUD-CLK
is used for the baud rate timing elements.

The Receiver

The receiver is based on a simple state machine implemented with a counter.
when the counter is idle (assuming initialized by INIT’), the C74 flip flop

is reset, so the baud-divider counter is disabled. The state machine

counter is driven the baud-divider, which divides the 8*4800 baud BAUD-CLK
down to a frequency for sampling the incoming signal. When the machine is
at state 0000, the 2~ 4 output of the divider loads (i.e., synchronisly

resets) the counter. On the other states, bit 8 performs this function.

The reason for this is to center the clock edge of the shift register in the

the middle of the incoming data bits (See the timing diagram).

When a start bit comes on the serial data in, the flip-flop is set, enabling
the counter. After the first four pulses, the shift register is clocked and
the counter is incremented. The states are used as follows:

0000 idle, counter loaded
0001 start bit
0010 LSB

1001  MSB, Recv.REQ pulled high.

When state 1001 is reached the flip-flop is cleared and counting stops, and
Recv.REQ is pulled high. The state machine remains in state 1001 with
RECV.REQ high until RECV.ACK turns on. This clears the counter, causing
RECV.REQ to drop.



The Transmitter.

The Transmitter works in much the same fasion as the receiver, using a
counter as the basic state machine. When it is in the idle state (or
initialized) the counter is at state 0000, and the flip-flop is reset,
turning the baud-divider counter off. When XMIT.REQ is received, the
flip~flop is set causing the counter to be enabled. This causes the
counter to go through the following states:

0000 idle, loads shift reg
0001 shift out stop bit
0010 shift out start bit
0011 LSB

1010 MSB, counter disablied, XMIT.ACK asserted

When state 1010 is reached and XMIT.ACK is asserted, the counter stays in 1010
until XMIT.REQ drops. This action clears the counter and resets the machine.

Note the Start and stop bits are encoded by feeding lines directly into the

shift registers. The convention STOP-START-<data>-STOP is used instead of
START-<data>-STOP-STOP because the timing of the first bit is dependant on
the state the counter was last in. Because the timing on START bits is much
more critical the STOP bits, the extra STOP bit is sent first.

Note on both the receive and transmit state machines the clock is provided
by combining the BAUD, EARLY-CLK and EARLY-BAUD-CLKs, in hopes of keeping
the response of the ACK and REQ lines in synch with the rest of the system.



Construction notes:

The circuit for the UART was densly packed on the board and required 16
packages to implement. It was initialy tested with the single step switch,
then further tested by hooking the serial output of the XMT module to the
RECV module. By setting the data with switches and watching the output
with lights and switches, the operation could be observed with the free
running clock.

The major design blunder encounter was wiring the receiver state machine
so it initialized in a hung state. (State 0 loaded the counter resposible

for incrementing the state machine to state 1, but since it was loaded to
zero, it couldn’t count, so...). This was repaired by altering the design

of the reciever baud-rate timer so bits 4 and 8 were used to provide the
sampling timing, instead of using the load inputs. Unfortunatly, this
modification added an extra layer of gates to the state machine clock
circuitry, but this still appears to be (and hopefully, IS) well within

the timing constraints of the rest of the machine.



UART Signal definitions

Serial Data in- Data from terminal (positive logic)

Baud Clk-

Recv.ACK-

Recv.REQ-

8*4800 baud timing

Signal from term interface indicating data was taken. Should be
high until Recv.REQ drops

Indicates character available. Remains high until Recv.ACK is
aserted

Serial Data out-Data to terminal (negitive logic)

Xmit .REQ-

Xmit.ACK-

Requests that the character be sent. Should remain high until
Xmit.ACK

Asserted when data taken, falls when transmit is complete.

Early Baud Clk- Inverted 8%4800 baud signal, occurs 1 gate delay sooner.
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Lab 2- Terminal interface.

The terminal interface provides the necessary protocalls for the UART to talk
to the system bus, and provides the necessary buffering for the input and
output data lines.

The selection portion of the Terminal interface detects if the address of
the module is selected. It only checks the top three bits, and the low
order bit for the pattern 100xxxxxxxL. If the low order bit is a zero and
the bus is being read, the status register is read to the bus. If the low
order bit is a one, then the UART is selected.

The status register simply drives the RECV.REQ and XMIT.ACK lines (Data lines

0 and 1, respectivly) onto the bus, and immediatly asserts SSYN’. On the

next bus cycle, the status is read, and MSYN'’ drops, causing the data and SSYN’
to become de-asserted. This is used for the processor to poll the status

of a uart transmit or receive.

To write to the UART, the bus master generates 100xxxxxxx1 on the address bus
and does-pet assertsCTRL'. This generates the signal TERM-WRITE, causing
a flip flop to set that in turn asserts XMIT.REQ. The data will be read from
the bus into the shift register. Since this takes several clock pulses
(because the shift register must wait for the slower 84800 baud-clk to load)
SSYN’ is not asserted until XMIT.ACK comes high, indicating the data was
taken. When XMIT.ACK is asserted SSYN' is allowed to go low, and the data
can be taken off the bus. However, the flip flop controlling XMIT.REQ cannot
reset until XMIT.ACK becomes low again. This prevents the bus master from
attempting to send another character until the first one is sent, and the bus
- hangs until the first transmission is complete.

To read the uart, the bus master generates the address 100xxxxxxx1 and does
not assert CTRL'. If a character has been received, RECV.REQ will be high™
and the flip flop sets, driving the data to the bus and asserting SSYN".

This also generates RECV.ACK, causing RECV.REQ to fall. After RECV.REQ falls
and TERM-WRITE falls (MSYN' no longer asserted) the flip—flop resets and the
data is taken off the bus, and SSYN’ is de—asserted.



Terminal Interface Signal Dictionary
{see also UART definitions)

Term-Read: High when the term interface's address is on the bus and
MSYN' is asserted, and CTRL' is not asserted. Indicates

character is to be received.

Term-write: High when the term interface's address is on the bus and
MSYN' is asserted, and CTRL' is asserted. Indicates
character is to be transmited

Status-read: High when the terminal status register is selected, MSYN' is
asserted and CTRL' is asserted.



Terminal Control Block Diag
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Lab N+1- CPU

Mainly due to the fact that | actually got it working, this isn‘t going to be
a heavy duty description of how the CPU was designed. It is just a series of
short notes on oddities that were specific to my design.

The register layout of the CPU followed the layout given in the handout almost
exactly. Tri-state 374 latches were used for most of the registers, except the
Accumulator and the condition codes. The condition codes were implemented with
a four bit latch and then buffered with a 244, so the carry bit could be made
available to the ALU without also enabling it to the micro bus. The condition
codes were duplicated on both the hi and low order address lines, so they would
be in the right place for both the shift instructions and also the conditional
branching {more on this later).

The accumulator was implemented with two 74C195 registers. The ability to
shift right was created by hooking them up backwards (Unfortunatly | didn't
realize this until AFTER | built it..). Thus the hi order data went into the

low order bit of the register. The accumulator formed the B leg of the ALU
and the "Micro Bus” (output of all of the other registers, execpt the address
regs). went to the A leg of the ALU. The registers all read in data from

the “Destination Bus” (Dest Bus in the schematics).

Except for the accumulator, all registers were selected via 74C42 decoders.
The multiplexer for the data bus was also controlled by the same decoder as
the register enables. This caused several bugs in the microcode, since it
wasn’t immeadiatly obvious that to pass data from the accumulator to the
Dest bus required one of the registers to be enabled, (even though it's
contents was ignored) otherwise random data from the bus got gated to the
registers.

The Microcontrol. This was somewhat different than the one in the handout.
First off, no hold register- the microcode was just too simple to need it.
Second, there was no mux for selecting the micro branch address. | got around
this by ORing the top four bits of the MicroBus to the bottom for bits of

the LIT field input to the counters. If | wanted to branch to the Lit field

with no conditional, 1 simply didn’'t enable any of the registers (pull down
resisters assured a zero value). To perform an instruction conditional jmp,

i just enabled the IR-H, and for condition code jmps the CC register was
enabled. This is why the CC bits were placed on both the upper and lower
four bits.

The bus control logic was stolen straight from the Maintanence panel (most of
the chips were even in the same locations).

The Microcode, written with MakeCode (see manual) is pretty straight forward.

It is very inefficent, but since we weren’'t graded on CPU speed | wasn't

worried about that (many of the instructions could be folded, but weren‘t for
clarity). About the only really arcane thing is the use of Andersons’ methods

for conditional branches on the condition codes and the STC and CLC instructions.
(See Anderson’s notebook for details.)



BUGS/Conclusions

There were dozens of microcode bugs. | was pretty inept at that.

The accumulator was wired backwards, so it shifted left instead of right.
(Jim G. pointed this out to me).

The 906 buffer and pull up were left of the carry input to the ALU. This
caused the ALU outputs to go meta-stable on some occasions, but not others.
e.g., it would peform and ADD instruction correctly, but it wasn’t able to
increment the PC from 07 to 08. Very wierd...it didn’t show up until |

tried to write a program longer than 8 instructions! (Thanks to John Slator
and his logic probe for pointing this out.)

There was a wiring error (and another possible short) on the Micro Bus, causing
register to load with strange values (thank god for logic analyzers).

There was a glitch/hazard in the logic selecting the UART SENDER causing it
start without ever getting at acknowledged. (Hayes figured this one out).

The Bus control logic was re-designed to so it stopped the micro-pc on the
u-Instruction that requested the bus, instead of the next one.

BUT, after the above (and many others) were fixed, it did correctly execute
the test program. After five iterations of the test program (over a period

of about two minutes) the CPU was powered off and torn apart. It probably
has the record for the shortest operational life of any computer system in
history.



CPU signal definitions

Micro-control output lines:

LIT-0..LIT-10

HR-CTL
LIT-CTL

LIT-ONLY

BUS-RW

BUS-REQ

DEST-SEL-0..2

PS-SEL

LD-PS
LD-ACC
ACC-SHIFT

A‘-SRCO L) 2

CIN-SELO..1

ALU-CTOLO..3
ALU-MODE

Other lines:

BUS-WAIT

CPU-DRIVE
BUS-WRT

DEST-DISABLE

ALU-CARRY

ALU-SIGN

These were the "Literal field" outputs of the UCS (micro
Control Store). Mostly used for branch address (though in
Bradakis's design they could also be written to the bus).
Used to control the non-existant Subroutine Hold Register.
Loaded the LIT field into Micro PC.

Specified that the LIT field was to be gated into Micro PC
without ORing in the MicroBus. This worked by disabling the
MicroBus select decoder.

If high meant the CPU was reading the bus, if low it was
writing.

Meant the CPU was doing a main system bus read or write.

These were decoded to select which register was loaded
from the dest bus.

If High, the PS was loaded from the Dest BUS, if low it was
loaded from the ALU condition codes.

Loaded the PS register.
Loaded (or shifted) the accumulator.
If high, the accumulator was shifted, otherewise it was loaded.

These selected which register would be enabled the the Micro
Bus (A-leg of the ALU and input to LIT field).

Selelected the carry bit into the ALU action 00= load with

zero, 01= load one, 10 Load with PS carry, 11= Load with PS
Carry inverted

Selects the ALU function

Stops the MicroPC from loading or counting while the CPU is
waiting for bus ownership.

Indicates the CPU is driving the main bus.
Indicates the CPU is writing to the main bus.

Prevents any of the Destination registers from loading (used
during bus cycles).

Carry out of ALU

Sign bit of ALU output.



LD-ARH
LD-ARL
LD-IRH
LD-IRL
LD-PCH
LD-PCL
LD-T

IRH-ENA
IRL-ENA
PCH-ENA
PCL-~ENA
T-ENA
PS-ENA
BUS-ENA

Decoded "DEST-SEL" lines

Decoded "ASRC" lines

Multiplexed main data bus onto the DEST bus.



Software Tools

Two important software tools were developed for this project. The first was
MakeCode, a microcode assembler that allowed symbolic names to be given to
signals, signal combinations, and control store address. (see the MakeCode
User’s guide for more information). The second was a schematic editor.

Both were developed in RLISP, and listings of both are included.

The schematic editor is one of the “dumb” varity (vs. something like CADDOL)
This means it knew nothing about gates or logic, but could just perform

simple drafting chores. A special character font was defined on the Apollo

for representing most of the simple logic elements (gates, buffers, latches,

etc). The system allowed these to be placed on the screen. Lines were then
manually drawn to hook them up. More complex logic elements (e.g., counters,
latches) were accomplished by manually drawing a box. Bubbles could be
placed to represent inverted signals. The system uses arrow keys to move the
cursor and function keys to place labels, lines, gates, etc. It runs using

the apollo display manager, and uses three windows: the main graphics window,
a text input window and a text transcript window (the latter two for entering
things like labels). '

The data base for the system consisted simply of a transcript of the drafting
actions during a session, e.g. Line was placed at location x1,y1; 2 input

nand gate was placed at location x2,y2, etc. If something is changed, no
attempt is made at changing the original data. Instead, new data is just
tacked onto the end of the data base. (e.g. if a signal line is moved, it is
stored as “line erased at x1,y1; line drawn to x2,y2")

The code is not a software engineering work of art. In fact it wasn't

really “designed” but instead evolved out of a long debugging session.
Unfortunatly, it has found other uses in the department (e.g., the

generation of overhead projector lecture slides) and will undoubtedly have

to be re-written. The system was not significantly faster to use than

pencil and vellum, but gave much neater results. Changes could be made much
more cleanly than on vellum, and the ability to scribble on a "good” copy

{since you could always print another) was another major advantage.
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