
The CuriLights Controller J. Peterson

The CuriLights Controller

Project Report
John Peterson
February 2011

Introduction
Color LEDS are opening up many new opportunities for decorative and creative
lighting. Using high-brightness RGB (Red-Green-Blue) LEDs each individually
driven by a microprocessor, it’s possible to create a string of lights with an
infinite variety of patterns and designs.

The CuriLights Controller J. Peterson

However, with this tremendous flexibility comes a problem: How do you make it
easy and convenient to control the lights? You want control of colors, brightness,
patterns, even animations, with a simple interface anybody can use.

The system presented here solves this problem. The mbed microcontroller is
used at the heart of a very user-friendly system for controlling a string of color
LEDs. The controller provides direct feed back with a color LCD display, and
uses a simple control knob to provide a sophisticated yet intuitive user interface.
It also allows easy access to a catalog of patterns stored on an SD Card.

The system is responsive to the environment. The light string is turned off when
it’s dark, but a motion sensor turns them back on if it senses movement in the
room, allowing their use as night lights.

Figure 1 - CuriLights

CuriLights
Before discussing the controller, it’s useful to understand the design of the LED
light string. The lights in the string are based on the CuriLights design. Each
CuriLight has an RGB LED driven by a small MCU (currently a PIC 16F688). A
serial line transmits information to the lights in a daisy-chain fashion, where data
presented to one light is re-broadcast to the next. When initialized, each light is
assigned a unique ID corresponding to its position in the chain of lights. A high

The CuriLights Controller J. Peterson

level serial protocol is used to transmit unique color information to each light,
allowing complete control of every light in the string.

At first it may seem like overkill to have a microcontroller dedicated to each
LED, but this design has a lot of advantages. First, because the data is encoded
serially, only three wires are needed to connect the string of lights. Trying to
control that may color LEDs from a central location otherwise requires a large
number of wires (each LED requires four). The local storage and
programmability of the microcontroller enables advanced applications such as
animating the lights. And the MCU provides excellent facilities for managing the
current drive required by the LEDs.

The design uses the 14-pin Microchip PIC16F688 microcontroller. Although in
theory it’s possible to use an eight pin MCU such as the PIC12F series or the
Atmel AVRtiny, the larger MCU has a couple of useful features. First, it has an
on-board UART hardware for transmitting and receiving serial data. This
enormously simplifies the software and timing for serial communications.
Second, the additional memory on board eases the protocol implementation and
enables features like animation.

Each light has just the MCU, LED and circuit board, no other hardware is
required. The current limiting resistors typically associated with LEDs are
avoided by using pulse-width modulation to keep the average current draw per
LED below the 20mA rated maximum. Doing this in software adds little
overhead and saves dozens of components in the finished product. The MCUs
only draw 250µA, a tiny fraction of the 75-80mA used by a fully lit RGB LED.

Serial Protocol
The protocol has a simple format. The first byte is a command, followed by up to
three parameters. Each of the parameters within angle brackets is a single byte;
<color> is the six bit color specification described above, <ID> is the number
(starting from zero) of the MCU/LED light.

Name Specification Description
Init I<ID> Sets the IDs of this and subsequent lights
Color C<ID><color> Sets LED at <ID> to <color>
Frame F<ID><frame #><color> Sets <frame #> of LED <ID> to <color>
Step S Steps one forward in the animation
Number N<count> Broadcasts the light count

The Init command is given as I<0> to the first light. This sets the ID of the first
light to zero. This light then increments the ID, and sends that to the next light,
giving that one an ID of one. The light after that gets an ID of 2, etc. This way

The CuriLights Controller J. Peterson

the lights are all given unique IDs. When a command with an <ID> parameter is
sent, each light compares the <ID> in the command with the ID assigned by the
Init command. If a command doesn’t apply to this particular LED, the MCU
rebroadcasts the command on the serial output port, where it’s fed to the receiver
of the next light’s MCU.

The <color> parameter is nine bits, three bits each for red, green and blue. To
keep the format compact, the ninth bit (the MSB of red) is passed as the top-most
bit of the ID. This means a given string of lights is restricted to 127 lights.

Animation
Several “frames” of different color values may be stored on each light via the
Frame command. The first light in the string (with ID = 0) takes care of sending
out the Step commands to advance the lights to the next frame at regular
intervals to produce animated effects.

Since the Step command must propagate from light to light, the following
scheme is used to synchronize the animation. First, the Number command is
used to broadcast the total number of lights to all the MCUs in the string. When
the first light in the string (light 0) begins a frame, it immediately sends a Step
command to the other lights, but delays for the number of lights times 2ms (the
time to receive and send a step command) before actually changing the light
color, to give the command time to propagate down the string. Each subsequent
light delays for (N - ID) * 2ms, and the last light changes as soon as it receives the
S command; this way all the lights change their colors at the same time.

The CuriLights Controller J. Peterson

4 G

3 B

2

C

1 R

PIC16F688

U3

8RC2
9RC1
10RC0
11RA2
12RA1
13RA0
14GND

7 RC3
6 TX
5 RX

4 MCLR
3 RA4
2 RA5
1 V+

4 G

3 B

2

C

1 R

PIC16F688

U1

8RC2
9RC1
10RC0
11RA2
12RA1
13RA0
14GND

7 RC3
6 TX
5 RX

4 MCLR
3 RA4
2 RA5
1 V+

4 G

3 B

2
C

1 R

PIC16F688

U2

8RC2
9RC1
10RC0
11RA2
12RA1
13RA0
14GND

7 RC3
6 TX
5 RX

4 MCLR
3 RA4
2 RA5
1 V+

Figure 2 - Schematic of a String of CuriLights

The CuriLights Controller J. Peterson

SD Card

LCD Display

External +5V
Regulated Supply

PIR
Motion

Detector

CuriLights

Light
Sensor

Control
Knob / Button

SPI

SPI

GPIO

Backlight,
buttons

LED

Serial

Serial

+3V Out

Analog

3xGPIO

CuriLights Controller
System Block Diagram

USB

To Computer
Figure 3 - System Block Diagram

The CuriLights Controller

Overview
One of the benefits to using a MCU like the LPC 1768 is its ability to drive a full
color raster display. This makes for a much cleaner and more intuitive user
interface. For this system, a 1.5” Epson color LCD display is used for displaying
menus and graphics. The primary interaction with the controller is a knob
attached to a rotary encoder. Knobs make ideal controls, because it’s easy to
quickly turn past unwanted selections, yet easy to get fine control for desired
ones. The knob also features a push-click momentary switch useful for
confirming selections.

An SD Card is included for storing a catalog of patterns. This provides a
straightforward way to update or add to the collection of patterns in cases where

The CuriLights Controller J. Peterson

the controller is permanently mounted away from easy computer access. The
USB port on the mbed module is also used for a couple purposes. First, the serial
input connection is routed directly to the serial input on the string of lights,
allowing the light string to be controlled directly by an attached PC. Second,
new patterns may be downloaded via USB to the disk drive on the mbed. When
the mbed is reset, any patterns downloaded on it’s internal USB drive are moved
over to the SD card for access by the controller.

Finally, two sensors on the controller monitor the lighting environment so the
controller responds appropriately. A photocell connected to one of the mbed’s
analog inputs measures the ambient room light, so if the room is dark, the lights
are shut off. A PIR (Pyroelectric InfraRed) motion sensor, however, “wakes up”
the lights if motion is detected, making the system useful a night light.

Hardware Details

Figure 4 - a) System Board, b) With Display Attached

The heart of the system, of course, is the mbed development board, based on the
NXP LPC 1768 MCU. The rich set of on-board peripherals, timers, interfaces and
memory all find use in this project.

The LCD display is an Epson LCD originally manufactured for Nokia 6100 series
phones. Because of the tremendous volumes phones are manufactured in, these
displays are now relatively inexpensive. This display comes mounted on a
breakout board from SparkFun electronics. The breakout board simplifies the

The CuriLights Controller J. Peterson

physical assembly and provides some additional circuitry for powering the
display’s backlight.

The display communicates with the MCU via an SPI interface using mbed pins
11 and 13, pin 14 is used to drive the display’s CS (Chip Select) line (note the
display is a “write only” device). The SparkFun breakout board has some
additional peripherals including an RGB LED and two pushbutton switches.
These are interfaced to the mbed, via GPIO lines. Although the current system
doesn’t use these, they may become useful as the software design evolves, so it
made sense to wire them up.

The display’s backlight is driven via one of the mbed’s PWM (Pulse Width
Modulation) lines. Using a PWM line allows the mbed to gracefully fade the
display on and off. Since the backlight requires 5 volts and a significant amount
of current, a 2N3906 transistor is used to switch the current for this line. In order
to drive the transistor to saturation, the mbed output is run through a TI
TXB0104 level converter to take the 3.3V output of the MCU to the 5V level of the
backlight supply line.

The motion detector is a Zilog ZEPIR0AAS01SBCG. This is a self contained unit
with its own MCU. It communicates to the mbed with a simple serial protocol
on pins 27 and 28.

Most of the other components interface very simply to the mbed. The SDCard
adapter is connected to the SPI port via pins 5 – 8. The photocell forms a simple
voltage divider and is fed into an analog input line, pin 19. The rotary encoder
knob uses three digital inputs, one for the pushbutton switch and two for the
quadrature – encoded rotation signals. Finally, a serial port on pin 9 is used to
drive the CuriLights. Since the CuriLights run on 5V, another channel of the
TXB0104 level converter is used to interface to them.

Although the USB port is integral to the mbed module, it also forms a key piece
of the overall hardware system. The serial input is used to pass data from any
attached computer on through to the CuriLights, allowing the controller to
operate as a USB to serial interface. And lighting pattern files downloaded to the
mbed ‘s USB storage are automatically transferred at system start to the SD Card,
where they’re used by the system.

User Interface
The basic structure of the user interface is a menu using the knob to select items,
pushing on the knob when the desired selection is reached. This UI is

The CuriLights Controller J. Peterson

immediately familiar to anybody who’s ever used an iPod® or most any digital
camera.

Familiarity with these devices has also raised the bar for expectations of the
graphics presented on the screen. Blocky “aliased” fonts and graphics look out
of place on modern devices, so a set of anti-aliased graphics was developed to
get a clean look.

Figure 5 - Sample Screenshots; a) Home menu, b) Color select, c) Pattern select

The home screen is shown in Figure 5a. Choosing the “Colors” option results in
a screen like Figure 5b. When you turn the knob, the white cursor moves about
the wheel and the center color (and the string of lights) change as you turn it.
Clicking the knob button sets the light color and returns you to the home screen.
Likewise, selecting “Patterns” in the home menu takes to the screen in Figure 5c.
As you turn the knob, the different patterns stored on the SD Card are displayed
on the lights, along with the name and a sample of the pattern on the screen.
Clicking the knob button selects the pattern and returns you to the home screen.

The “White” menu item sets the string of lights to white, and allows you to
choose a brightness level. Clicking “Lights Off” in the home menu shuts the
lights off. This changes the menu item to “Lights On”, selecting that turns the
lights back on.

Finally, “Settings” is reserved for future screens to set various system
parameters, such as how long the lights stay on after motion is detected, and
enable or disabling the motion and light sensors.

System Software
The software is implemented in C++, using the tools and libraries provided on
the mbed.org web site. Extensive use was made of existing libraries for SPI and
Serial communication, supporting the file system on the SD Card, and
responding to digital inputs with appropriate denouncing.

The CuriLights Controller J. Peterson

Graphics
The basic support for the LCD screen was based on some code found on the
SparkFun web site, but it was substantially modified and enhanced. In
particular, routines were added to support rendering anti-aliased graphics.
Since rendering quality graphics on the MCU requires the development of a very
sophisticated software library, another approach was used. A set of anti-aliased
fonts and graphics was prepared on a PC using Adobe Photoshop®. Scripts
were used to convert these resources to C++ source code. They are stored as
constants, and reside in Flash memory, not RAM.

Some items, like the color selector screen, were developed using a simple
JavaScript program to create the color wheel graphic. A screen capture of this
was converted into a PNG file in Photoshop, and then a Python script was used
to convert the PNG file into C code defining the constant data.

Similarly, an ExtendScript program was used to program Photoshop to generate
individual image files for each of the characters used in the display, thus taking
advantage of the nice anti-aliased fonts in Photoshop. Similar Python scripts
were used to convert these into C code defining constant data for the sprites.

These “sprites” define a mask, where the white pixels define a foreground color,
the black ones the background color, and the gray ones define the blend between
the two. Thus a compact, monochrome sprite can be used for any combination of
foreground and background colors.

This approach offloads the production of high quality graphics to existing PC
tools well suited to the job, rather than trying to re-create them in the constrained
MCU environment.

UI System
The user interface is implemented with a set of classes to help organize and
simplify the design. The PushKnobUI class manages the hardware controls for
the UI, i.e., turning the knob and pushing it. All classes using these devices
descend from this class, but only one “owns” the controls at a time. This
ownership is controlled by the SwitchTo method. The menu classes and the
LightController class descend from PushKnobUI. Since the PushKnobUI
class monitors the user activity, it also takes care of turning on the LCD screens
backlight. Any activity calls a Wake method, which starts a timer. Other calls to
Wake while the timer is running reset it, but when the timer expires the Sleep
method is called to fade out the screen’s backlight.

The CuriLights Controller J. Peterson

PushKnobUI

UIMenu LightController

HomeMenu

ColorSelector PatternSelector WhiteSelector

ControllerUI

Figure 6 - UI Class Hierarchy

The menus descend from the UIMenu class, which implements all the screen
activity and selection. When the KnobPushed method is called, the menu
subclass acts upon the current selection.

The three screens that actually set the light patterns are managed by the
LightController class. This class has three possible controllers, one for
Patterns, another for Colors, and a third for White (brightness). These all
descend from the ControllerUI base class. When the home menu selects one
of these, the LightController sets an active Controller, and routes all of the
activity (knob movement, turning the lights on or off, etc.) through the active
controller.

These user interface classes are interrupt-driven; they are invoked by GPIO
interrupts when the knob is turned or the button is pushed. Simply instantiating
the HomeMenu in main() is sufficient to activate them. The light and motion
sensors, however, are polled in a loop at the end of main(). These call into the
HomeMenu if they detect the lights should be turned off or back on.

Pattern Files
Pattern files are used to store various patterns displayed on the lights. These are
downloaded to the on-board storage via USB, or placed on the SD Card (files on
the mbed storage are moved onto the SD Card at system reset).

Since the CuriLights support a nine bit color specification (three bits each for red,
green and blue), a convenient shorthand for representing light colors is a three
digit number, where the first (hundreds) digit represents red, the second (tens)

The CuriLights Controller J. Peterson

digit represents green, and the last digit represents blue. Pattern files are simply
lists of these numbers, one per line, for each of the lights. If the pattern has fewer
lines than there are lights, the pattern is simply repeated for the rest of the lights.
For example, to have string of red, white and blue lights, the pattern file contains:

700
777
007

As a tool for creating more intricate patterns, a script was written to convert PNG
image files into pattern files. This allows you to use tools like Photoshop as a
pattern editor, by creating one-pixel high images.

Conclusion
The CuriLights Controller provides an easy to use, simple control for getting the
most out of a string of colorful LED lights. It works well as both a stand-alone
light string controller, as well as attached to a nearby computer.

The LPC1768 provides enough resources for a high-quality color user interface;
meeting the expectations you have in a world where every new gadget has a
bright color screen. The mbed system worked extremely well for this project.
The tools and the libraries were easy to learn, and both software and hardware
development progressed very smoothly.

The CuriLights Controller J. Peterson

Schematic

22
0n

F
C1

+3,3V

8.2
k

R4

PDV-P9203
R3

RotaryEncoderENC130175F S1

A
C
B

SW
SW

+5V

VLBRDCONN

J3

+5V
GND
Serial
NC

+5V+3,3V

TXB0104 SO14

U1

OE
NC
B4
B3
B2
B1

VCCB

GND
NC
A4
A3
A2
A1
VCCA5.6k R2

+5V

T1
2N3906

NOKIALCD

IC3

VBATT
3.3V
GND

LED_RED
LED_BLU
LED_GRN

/RESET
DIO

SCK
/CS

/SW2
/SW1

+3,3V+5V+3,3V

SDCard

J2

GND
CLK

V+
GND

SDI
ChipSelect

P9

IRQ
SDO

100k

R1

+3,3V

ZEPIR0AAS01SBCG

IC2

GN
DSLP

LG
MD/RST
TXD/SNS
RXD/DLY Vd

d
GN

D

+5V

J1

SW
GND

+5V

MBED

IC1

PWM
PWM
PWM
PWM
PWM
PWM

RX/SCL
TX/SDA
CANTD
CANRD
USBD+
USBD-
ENTD+
ENTD-

ENRD+
ENRD-

IF+
IF-

+5V
+3.3v

p20A
p19/A
p18/Aio
p17/A
p16/A
p15/A
RX
TX/SCK
MISO
MOSI
RX/SCI
TX/SDA
Pin8
SCK
MISO
MOSI
nR
VB
Vin
GND

	The CuriLights Controller
	Project Report
	Introduction
	CuriLights
	Serial Protocol
	Animation

	The CuriLights Controller
	Overview
	Hardware Details
	User Interface

	System Software
	Graphics
	UI System
	Pattern Files

	Conclusion
	Schematic

