
Re-Animating the PDP-11/70

©2004 John Peterson

Introduction

Light and switchs – a lost era of computer style
When computers first appeared, one of the most distinctive things about them
was the complex array of blinking lights and switches. It was an exciting look,
and for many years the rows of mysterious blinking lights became the very
stereotype of what a computer was.

By the early 80's, microprocessor based front-end processors connected to
terminals replaced the lights and toggles, and computers morphed into bland
metal boxes with little more than a power switch and an “on” light. The visual
excitement of large computers was lost. This point hit home when I was in
college and the local TV news crew came to our school's computer center to
cover the installation of an expensive new mainframe. When we watched the
report on TV that evening we were chagrined to see it featured video of...the air
conditioner. Of course, it was the only machine in the room with blinking lights.

Figure 1 - PDP-11/70 Front Panel

Like many who became acquainted with computers in the mid-70s, one of the
first machines I used was the DEC PDP-11. Of the PDP-11's built with blinking
lights and switches, the largest was the 11/70. As a computer it’s small by

Project eZ2951 Page 2

today’s standards (your cell phone has more compute power), but physically it
was non-trivial. A typical installation occupied at least two (usually three or
four) full height equipment racks painted black with pink and purple trim. Each
DEC operating system had a unique light show running on the control panel
when the machine was idle. If the machine was busy the lights sparkled and
dimmed as it crunched away

I’ve always missed that visual and tactile aspect of computers that’s been lost
since the advent of microprocessors. When a console for a PDP-11/70 came up
for sale on Ebay, I couldn't resist the opportunity to bring it back to life.

Re-animating the console
The simplest approach to this would be just to hook up a simple micro-controller
to blink the lights in a pre-defined way. But why not go further? By putting the
PDP-11 console up on the local network, all sorts of possibilities open up for
allowing the light display to change on the fly by remote control. By making all
of the lights and switches available over the net, the panel becomes a dynamic
work of art, rather than a static artifact. Indeed, connecting every switch and
light opens the door to a full simulation of the original computer.

I had purchased a surplus PC based SBC with an eye toward using it to drive the
panel, but it really wasn't a good fit. It required a noisy fan and disk drive, and
accessing its limited parallel I/O required development in Linux or DOS - really
overkill for this application.

With the eZ80F91 I saw a perfect fit for this project!

- It is network ready
- It has lots of readily accessible parallel I/O
- Great development and debugging tools
- Small package
- Low power

Project Design

The Panel
The PDP-11/70 panel is a classic example of mid-70’s hardware design, built
entirely around 7400 series TTL. It uses LEDs for the indicators (the previous
model, the PDP-11/45, still used incandescent lamps). The panel connected to
the rest of the computer via three 40-pin ribbon cables, along with another
connector for additional power.

Project eZ2951 Page 3

While a few of the LEDs are driven by local logic on the panel’s circuit board, the
vast majority are connected (via 7404’s and the like) to individual pins on the
ribbon connectors. Likewise, each of the toggle switches corresponds to a ribbon
connector pin as well. The 22 “register” switches on the left are connected to
directly to the power supply via pull-ups. The seven “action” switches on the
right are fully debounced with NAND-gate flip-flops. The two knobs are
decoded to three and two bits by logic on the board. This logic also drives the
LEDs corresponding to the knob settings as well.

In sum, the panel has:

22 Switch register outputs
7 Action switch outputs
6 Knob bits (3+2), plus the Panel Lock

35 Total output bits

16 Data register LEDs
22 Address LEDs
13 Status LED inputs
51 LED Input bits

86 Total I/O lines

Panel controller overview
While the eZ80F91 has a generous helping of parallel I/O, it clearly needs some
more for this application. I decided to use a Xilinx XC95108 CPLD to provide the
additional parallel I/O. While the chip is relatively expensive (US$30 qty 1), it’s
very flexible and provides 69 I/O lines in a single package. I used 61 of these
lines to interface to the panel and seven to interface to the eZ80F91. Another nice
feature of the XC95108 is it interfaces directly to both the 3.3v logic of the
eZ80F91 and the 5v logic of the panel.

Project eZ2951 Page 4

13 12 22 39

4

CLK

LD Addr

DIR

Ethernet

ZDI
JTAGReset

XC95108
CPLD

eZ80F91
Web Server

Module

ConfigConfig

Data

PDP-11/70 Control Panel

Figure 2 - System Block Diagram

The eZ80F91 takes on the rest of the panel interface, driving 9 status lines (via
10K pull-up resisters) and handling 13 inputs. The inputs from the panel
(driven by TTL gates) are connected directly to the eZ80F91, since it is 5v
tolerant. To drive the TTL gate inputs, the eZ80F91 GPIO ports are configured in
“open drain mode” and pulled up to +5v via 10KΩ resister networks. The
remaining seven I/O lines are used to interface to the CPLD.

The I/O lines from the eZ80F91 and the CPLD are connected to the panel using
the same ribbon connectors the panel originally used to connect to the PDP-
11/70 CPU. These cables also supply some of the +5V power to the panel (for
some odd reason, the panel requires three separate +5V supply lines). The
system is supplied with +5v from an external power supply. An LTC1086-3.3v
regulator provides power for the eZ80F91 module. The only other components
required are bypass capacitors, a reset switch, and connectors for programming
the eZ80F91 and the CPLD.

Project eZ2951 Page 5

The CPLD
The CPLD, a Xilinx XC95108, is configured as a bi-directional parallel port with
22 inputs (for each of the register switches) and 39 outputs (16 data lights, 22
address lights, and an extra status light).

The values for the I/O lines are transferred four bits at a time via a bi-directional
data bus between the CPLD and the eZ80F91’s GPIO port C. Each group of four
I/O lines is given a unique address.

In addition to the four data lines, the CPLD has three control lines to interface
with the CPU. These are:

o CLK – Clocks in the I/O address or output data
o LOAD_ADR if high, the data on the bus is clicked into the I/O address

register
o DIR – if high, switch data is driven from the CPLD onto the data bus.

LOAD_ADDR

DATA 0..4

CLK

DIR

Load Address Read Switch Data Write LED Data

Figure 3 - CPLD Interface Timing

To read the value of the switches, the eZ80F91 first chooses the address of the
group of four switches to read. This is driven onto the CPLD’s data bus,
LOAD_ADR is set high and CLK is taken high then low. This selects the group
of four switch values to read. Then DIR is asserted, and the switch values are
read from the data bus.

To write to the LEDs, the I/O address is first selected as above. Then the CPU
drives the values onto the data bus and asserts the clock line to load the data.

Project eZ2951 Page 6

4 bit latch

Output
Address Decode

Input
Address Decode

I/O Address
Latch

Control
Inputs

LED
Outputs

4

4

Data

Address

Figure 4 - CPLD Block Diagram

Internally, the CPLD has a group of five input buffers and ten output latches
each of which handles four data lines. An address latch is shared for both input
and output. The output of the address latch is decoded and used to enable a
particular output latch or input buffer. When the DIR line is high, the output of
the selected input buffer is driven onto the data bus. When it is low, data on the
bus is read into the selected output latch when CLK goes high.

The CPLD has no trouble keeping up with the eZ80F91, which, completes an I/O
write every 60us or so. Thus all of the CPLD’s output latches are updated in less
than a millisecond.

A JTAG header on the board allows the CPLD to be configured in place. The
CPLD stores the configuration in Flash memory, so the configuration remains in
place after the power goes off.

Design Process

Initial Testing
I acquired a eZ80F91 development board to have a stable test environment for
initial software development. This avoids the double-trouble of trying to debug

Project eZ2951 Page 7

both hardware and software at the same time. At $99 the Zilog development kit
is a great bargain (the wall adapters, ethernet cables, and Ethernet router would
cost nearly that much if purchased retail…). Trying out the demos on the
development board is a great way to familiarize yourself with the software
development process.

The CPLD was defined in Verilog, (see file AllPanel.v) and compiled with
Xilinx’s WebPack toolset. WebPack includes a behavioral simulation package
called ModelSim that was useful at catching few early errors.

The development board was hooked up with clipleads to a Digilent XC95
development board for the XC95108 CPLD. This lash-up allowed me to verify
the communication between the eZ80F91 and the CPLD.

Finally, I did a couple more clip-lead tests to verify the eZ80F91 and the CPLD
could properly drive the TTL on the panel.

Circuit Board Design
While the project could have been fabricated with wire-wrap, a circuit board
gives a much more polished result. With over four hundred connections, hand
layout was not really practical. I used Target-CAD to generate the PCB layout
from the schematic. Since I don’t have much experience at SMT soldering, I
opted for through-hole construction. This made the final assembly very
straightforward.

One interesting feature of CPLD design is the definition of the I/O pins for the
device is completely arbitrary. In fact, it’s specified in a separate file from the
Verilog source. In my first version of the schematic, I left the CPLD pins in
numerical order and connected them arbitrarily by where the fell in the
schematic. However, Target’s auto-router gave up in despair after half an hour
of computation, with many of the signals left unrouted. I discovered it was
necessary to assign the CPLD pins so they’re near the items they connect to give
the auto-router the best chance of working. With careful pin assignment, only a
handful of the connections still needed hand routing.

Software

Currently the software performs the basic, low-level access to the Panel. A
library of routines (Panel_IO.c) interfaces with the GPIO ports to access all of the
lights and switches. These are grouped by their placement on the panel, for

Project eZ2951 Page 8

example the switch register, the address and data lights, the status lights and the
various control switches.

The hardware is designed so that all of the control switches are routed to port D
on the eZ80F91. Since these are fully debounced by circuitry on the PDP-11/70
panel, the CPU may use these as edge-triggered interrupts.

The next phase of the software (currently under development) is to make the
switch and light information available over the Ethernet. The Panel controller
will listen for connections on a specified port, and report the switch settings and
accept bit patterns for the light display. Higher-level operations (such as
installing a particular animation pattern) are the next step. A simple sequence of
bit patterns for display can be downloaded to the panel controller for playback.

With a bit of clever scripting on another host on the network, the Panel becomes
a dynamic display that responds to external events. For example, the speed and
direction of the spinning lights can respond to say, your company’s stock price or
the weather.

Another possibility is to have the eZ80F91 emulate the PDP-11/70. Since the
PDP-11/70’s clock speed was just a few Mhz, the eZ80F91 could conceivably
emulate it at something approaching full speed.

Conclusions

One of the amazing discoveries during this project is how much design software
is available for free. The excellent Zilog development tools are included with the
development kits. The Target CAD system is available free1 for customers of the
European PCB-Pool circuit board fabrication service. And Xilinx gives away a
complete toolset for CPLD/FPGA development and simulation. The companies
doing this have a clear economic motive, since hooking people on software tools
is a great way to lock in chip and service sales. But it’s a huge win for doing
advanced development on a modest budget.

I found it very rewarding to bring back a wonderful relic of past computing
without investing in several square feet of floor space (and kilowatts of power).
Most everybody who sees the panel in operation can’t resist flipping the switches
to see what they do, something few were allowed to do with a $150,000 PDP-
11/70 25 years ago.

1 I opted to purchase a copy for a modest price, so I could take advantage of additional printing
features. The project could have been completed with the free copy, though.

Project eZ2951 Page 9

I also discovered the practical nature of all those switches and lights. Contrary to
what some may think, the front panels were rarely used to enter programs into
the machine. It’s way too tedious, and the magnetic core memory of the era
saved everything even when the power was off. The panels were primarily the
domain of the service technician, who used the lights as a window into the
machine as he probed step by step to find a bad memory bit or a hung device.

At one point during the final testing of the panel controller before I hooked
everything up, I was having a tough time making sense of my board’s output,
even with a multi-channel logic analyzer attached. Then it hit me – just plug the
panel in! Sure enough, a few minutes of flipping the switches and watching the
lights revealed the problem, an obscure typo in the CPLD pin configuration file.
It’s still useful after all these years.

References

A great web site featuring a number of wonderful panel restorations by David
House is at http://www.thegalleryofoldiron.com/

You can find out lots more about the PDP-11/70 on the web:
http://www.google.com/search?&q=pdp-11%2F70

Details about the Target CAD system are at:
http://www.ibfriedrich.com/english/index.htm

Information about the XC95108 CPLD:
http://www.xilinx.com/bvdocs/publications/95108.pdf

http://www.thegalleryofoldiron.com/
http://www.google.com/search?&q=pdp-11%2F70
http://www.ibfriedrich.com/english/index.htm
http://www.xilinx.com/bvdocs/publications/95108.pdf

	Re-Animating the PDP-11/70©2004 John Peterson
	Introduction
	Light and switchs – a lost era of computer style
	Re-animating the console

	Project Design
	The Panel
	Panel controller overview
	The CPLD

	Design Process
	Initial Testing
	Circuit Board Design

	Software
	Conclusions
	References

